Skip to main content

Table 1 Impact of reforms in the case of a four-firm market–firms alternate

From: Local labor markets and taste-based discrimination

Policy Employment subsidies Wage equalization Minimum wage
Wages Reds Unprejudiced \(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d\) \(w_{Ri}^{u}=p-\frac {t}{4}-\frac {1}{3} \gamma d\) \(w_{Ri}^{k}= \underline {w}\)
   Prejudiced   \(w_{Ri}^{p}=p-\frac {t}{4}-\frac {2}{3} \gamma d\)  
  Greens Unprejudiced \(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\) \(w_{Gi}^{u}=p-\frac {t}{4}-\frac {1}{3} \gamma d\) \(w_{Gi}^{k}= p-\frac {t}{4}\)
   Prejudiced   \(w_{Gi}^{p}=p-\frac {t}{4}-\frac {2}{3} \gamma d\)  
Global welfare    \(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} + s\gamma -\beta \) \(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} \) \(p - \frac {t}{16}-\frac {1}{2}\gamma d \)
Policy Transport improvement Transport subsidies Affirmative action
Wages Reds Unprejudiced    \(w_{Ri}^{u}= p-\frac {t}{4} \left (1-(1-\tau) \frac {\tau (1-\gamma)-\gamma (1-\tau)} {k}\right)- \frac {1}{3}\frac {\tau ^{2}(1-\gamma)}{k} d\)
    \(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\) \(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\)  
   Prejudiced    \(w_{Ri}^{p}= p-\frac {t}{4} \left (1-2(1-\tau) \frac {\tau (1-\gamma)-\gamma (1-\tau)} {k}\right)-\frac {2}{3}\frac {\tau ^{2}(1-\gamma)}{k} d\)
  Greens Unprejudiced    \(w_{Gi}^{u}= p-\frac {t}{4} \left (1+ \tau \frac {\tau (1-\gamma)-\gamma (1-\tau)}{k}\right)-\frac {1}{3}\tau \frac {\gamma (1-\tau)}{k} d\)
    \(w_{Gi}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d \) \(w_{Gi}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d\)  
   Prejudiced    \(w_{Gi}^{p}= p-\frac {t}{4} \left (1+ 2\tau \frac {\tau (1-\gamma)-\gamma (1-\tau)}{k}\right)-\frac {2}{3}\tau \frac {\gamma (1-\tau)}{k} d \)
Global welfare    \(p - \frac {t'}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t'} \) \(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} -T \) \(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t}+\frac {1}{9t}[\lambda (\lambda (-\gamma +2\gamma \tau - \tau ^{2}) \)
     \(\qquad +\gamma s \left (\frac {1}{4n}+\frac {d^{2}}{36t} \right)\) −4d γ(1−τ))]
with k=τ 2(1−γ)+γ(1−τ)2 and \(\lambda =\frac {3[(\tau (1-\gamma)-\gamma (1-\tau))t/n+\gamma (1-\tau)d/3]}{\tau ^{2}(1-\gamma)+\gamma (1-\tau)^)}\)