Skip to main content

Table 1 Impact of reforms in the case of a four-firm market–firms alternate

From: Local labor markets and taste-based discrimination

Policy

Employment subsidies

Wage equalization

Minimum wage

Wages

Reds

Unprejudiced

\(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d\)

\(w_{Ri}^{u}=p-\frac {t}{4}-\frac {1}{3} \gamma d\)

\(w_{Ri}^{k}= \underline {w}\)

  

Prejudiced

 

\(w_{Ri}^{p}=p-\frac {t}{4}-\frac {2}{3} \gamma d\)

 
 

Greens

Unprejudiced

\(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\)

\(w_{Gi}^{u}=p-\frac {t}{4}-\frac {1}{3} \gamma d\)

\(w_{Gi}^{k}= p-\frac {t}{4}\)

  

Prejudiced

 

\(w_{Gi}^{p}=p-\frac {t}{4}-\frac {2}{3} \gamma d\)

 

Global welfare

  

\(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} + s\gamma -\beta \)

\(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} \)

\(p - \frac {t}{16}-\frac {1}{2}\gamma d \)

Policy

Transport improvement

Transport subsidies

Affirmative action

Wages

Reds

Unprejudiced

  

\(w_{Ri}^{u}= p-\frac {t}{4} \left (1-(1-\tau) \frac {\tau (1-\gamma)-\gamma (1-\tau)} {k}\right)- \frac {1}{3}\frac {\tau ^{2}(1-\gamma)}{k} d\)

   

\(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\)

\(w_{Ri}^{k}=p+s-\beta -\frac {t}{4}-\frac {2}{3}d\)

 
  

Prejudiced

  

\(w_{Ri}^{p}= p-\frac {t}{4} \left (1-2(1-\tau) \frac {\tau (1-\gamma)-\gamma (1-\tau)} {k}\right)-\frac {2}{3}\frac {\tau ^{2}(1-\gamma)}{k} d\)

 

Greens

Unprejudiced

  

\(w_{Gi}^{u}= p-\frac {t}{4} \left (1+ \tau \frac {\tau (1-\gamma)-\gamma (1-\tau)}{k}\right)-\frac {1}{3}\tau \frac {\gamma (1-\tau)}{k} d\)

   

\(w_{Gi}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d \)

\(w_{Gi}^{k}=p+s-\beta -\frac {t}{4}-\frac {1}{3}d\)

 
  

Prejudiced

  

\(w_{Gi}^{p}= p-\frac {t}{4} \left (1+ 2\tau \frac {\tau (1-\gamma)-\gamma (1-\tau)}{k}\right)-\frac {2}{3}\tau \frac {\gamma (1-\tau)}{k} d \)

Global welfare

  

\(p - \frac {t'}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t'} \)

\(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t} -T \)

\(p - \frac {t}{16}-\gamma d+ \gamma \frac {5}{9}\frac {d^{2}}{t}+\frac {1}{9t}[\lambda (\lambda (-\gamma +2\gamma \tau - \tau ^{2}) \)

    

\(\qquad +\gamma s \left (\frac {1}{4n}+\frac {d^{2}}{36t} \right)\)

−4d γ(1−τ))]

with k=τ 2(1−γ)+γ(1−τ)2 and \(\lambda =\frac {3[(\tau (1-\gamma)-\gamma (1-\tau))t/n+\gamma (1-\tau)d/3]}{\tau ^{2}(1-\gamma)+\gamma (1-\tau)^)}\)